
:i• _

: •

L!( _!:<

iiiiL!!ii!i'_
:i!ii! iT' "

NUMERICAL STUDY OF THE EFFECTS OF ICING ON VISCOUS FLOW
OVER WINGS

NASA Grant NAG-3-768 ....:_!_:</:_::_................

Final Report

Submitted to

NASA Lewis Research Center
Cleveland, OH 44135

;:" ,!: t sZ'" z!
f

Attn.: Dr. Mark Potapczuk
Icing and Cryogenics Branch

2: _ _:_:

<_!jZ!, "i

7!( :_

;i

ZL; - •

,i

L

L :

Prepared by

L. N. Sankar

Professor, School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA 30332-0150

October 1994

(NASA-CR-197102) NUMERICAL STUDY

OF THE EFFECTS OF ICING ON VISCOUS

FLOW OVER WINGS Final Report
(Georgia Inst. of Tech.) 156 p

G_3_io2

N95-16803

Unclas

0030665



;': .........-, ....................._:_,__:_:_ .__:_ _,_:_.__ <_:: _ _: _ _ ::c_:_i_i__;::!:!_:_ii_z_:!_ii;i_i_:_,_/i_;!_i!!_!!;/:i_/_!V_:_:_!:!_!i_!:if_!_i!i!:!::_!_ii_!ii!_i:%!_!ii!_!}_i:_!!i!:i!_ii!iif_/ii:i_ii_i_i_;ii_i_:_i!!i}!!ii_iiiiii!i_iiiiii_i_i_iii_i_i_i_iii_i_iii_i_iii_iiiii_iiiiiiiiiiiiiiiiiiiii_iiiiiiiii_iiiiiiii_

ii}!i:/i£;
:_}, i_}_:

!:!i !i i_ ¸

_iii!_iiiil}i:

_iiiii!i'/

}13

ilil

INTRODUCTION

This report summarizes the progress made under the NASA Grant NAG-3-

768 titled "Numerical study of the effects of icing on viscous flow over wings".

The work was carried out by Dr. L. N. Sankar, the principal investigator, and Dr.

Oh J. Kwon with the assistance of the following graduate research assistants: Mr.

Jiunn-Chi Wu, Mr. Ashok Bangalore and Mr. Napporn Phaengsook. Another

student, Mr. Olympio Mello, not supported under this project, also contributed to

the work reported.

The research effort lead to the development of 2-D and 3-D computational

tools for the prediction of viscous flow over iced wings and airfoils. Much of the

work has already been published. Here is the list of all the publications,

supported by the present grant.

Refereed Publications:

18. Wu, Jiunn-Chi, Huff, D. and Sankar, L.N., "Evaluation of Three
Turbulence Models in Static Airloads and Dynamic Stall Predictions,"
Journal of Aircraft, Vol. 27, No. 4, April 1990, pp382-384.

Invited Conference Keynote Presentation

1. Sankar, L. N., Kwon, O. J., Bangalore, A., Phaengsook, N. and
Mello, O., "Effects of Icing on the Performance of Lifting Surfaces," Invited
Lecture, Workshop on Aircraft Icing and Transition, Ecole Polytechnique,
University of Montreal, Montreal, Canada, September 20-21, 1993.

Conference Presentations with Proceedinqs (Non-Refereed)

1. Potapczuk, M. G., Bragg, M. B., Kwon, O. J. and Sankar, L. N.,
"Simulation of Iced Wing Aerodynamics," Proceedings of the AGARD
Conference on Effects of Adverse Weather on Aerodynamics, AGARD
CP-496, April 29 - May 1, 1991.

Conference Presentations without Proceedings (Non-Refereed)

1. Wu, Jiunn-Chi, Huff, D. and Sankar, L. N., "A Comparison of Three
Turbulence Models for the Prediction of Steady and Unsteady Airloads,"
AIAA Paper 89-0609.
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2. Kwon, O. J. and Sankar, L. N., "Numerical Simulation of the Effects
of Icing on the Aerodynamic Characteristics of a Rectangular Wing," AIAA
28th Aerospace Sciences Meeting, Reno, Nevada, January 1990.

3. Kwon, O. J. and Sankar, L. N., "Numerical Study of the Effects of
Icing on the Hover Performance of Rotorcraft," AIAA Paper 91-0662,
January 1991.

4. Kwon, O. J. and Sankar, L. N., "Numerical Investigation of
Performance Degradation of Wings and Rotors due to icing," AIAA Paper
92-0412.

5. Sankar, L. N., Phaengsook, N. and Bangalore, A., "Effects of icing
on the Aerodynamic Performance of High Lift Airfoils," AIAA Paper 93-
0026.

6. Mello, O. A. F. and Sankar, L. N., "A Hybrid Navier-Stokes/Full
Potential Method for the Prediction of Iced Wing Aerodynamics," AIAA
Paper 94-0489

7. Bangalore, A., Phaengsook, N. and Sankar, L. N., "Application of a
Third Order Upwind Scheme to Viscous Flow over Clean and Iced Wings,"
AIAA Paper 94-0485.

During the final year of this grant ((January 1, 1994 - December 31,

1994), work was completed on an efficient hybrid procedure that may be used to

study clean and iced wing aerodynamics. This work resulted in the Ph.D.

dissertation of Mr. Olympio Mello. A draft copy of Mr. Mello's Ph. D. thesis

dissertation is enclosed as an appendix. A revised copy of Mr. Mello's

dissertation will be mailed to the sponsor in January 1995, after Mr. Mello

successfully defends his thesis work.
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SUMMARY

An improved hybrid method for computing unsteady compressible viscous flows

is presented. This method divides the computational domain into two zones. In the

outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the

Navier-Stokes equations are solved using a diagonal form of an alternating-direction

implicit (ADI) approximate factorization procedure. The two zones are tightly coupled

so that steady and unsteady flows may be efficiently solved. Characteristic-based

viscous/inviscid interface boundary conditions are employed to avoid spurious

reflections at that interface. The resulting CPU times are less than 60% of the required

for a full-blown Navier-Stokes analysis for steady flow applications and about 60% of

the Navier-Stokes CPU times for unsteady flows in non-vector processing machines.

Applications of the method are presented for a rectangular NACA 0012 wing in low

subsonic steady flow at moderate and high angles of attack, and for a F-5 wing in

steady and unsteady subsonic and transonic flows. Steady surface pressures are in very

good agreement with experimental data and are essentially identical to Navier-Stokes

predictions. Density contours show that shocks cross the viscous/inviscid interface

smoothly, so that the accuracy of full Navier-Stokes equations can be retained with a

significant savings in computational time.

xiv
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The development of computational fluid dynamics has brought to the industry

and research communities a variety of methodologies based on the transonic small

disturbance equation (TSD), full-potential equation (FPE), Euler equations and Navier-

Stokes equations 1. TSD- and FPE-based methods have been extensively used to

compute complex configurations. These methods, in some cases, have been coupled to

interactive boundary layer analyses to allow solution of problems where viscous effects

can be included in a limited way.

For problems where substantial separation occurs, the TSD and FPE techniques

coupled with interactive boundary-layer analysis are not adequate, since the concept of

a boundary layer is no longer applicable. For these cases, Navier-Stokes methods are

clearly needed. However, these are still computationally expensive and have seen

limited practical use for complete configurations due to this factor. This becomes

especially evident for problems where extensive computations are needed, such as the

prediction of transonic flutter 2.
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The present method is an extension of the work initiated by Sankar et aL l, who

developed a zonal Navier-Stokes/Full-Potential solver, which was subsequently

extended to rotors by Tsung and Sankar3 The approach used here is to solve the Full-

Potential Equation in an outer zone, away from solid surfaces and viscous regions, and

solve the Navier-Stokes equations in an inner zone, where viscous effects are essential.

This approach is schematically illustrated in Fig. 1.1. This results in a highly efficient

solver that retains the accuracy of the Navier-Stokes methodology near the solid

surface, and the simplicity of a potential flow solver away from solid surfaces.

k = KMATCH Full-Potential Zone

Navier-Stokes Zone

Fig. 1.1: Partitioning of Computational Domain into Inner and Outer Zones.

2



The Full-Potential solver used in the outer zone solves the unsteady

compressible FPE in strong conservation form using the artificial compressibility

concept and employing a strongly implicit procedure4, 5. The Navier-Stokes solver used

in the inner zone was developed by Sankar et al. and extensively tested in a variety of

problems 6-12. It employs a diagonal form 13 of an alternating-direction implicit (ADI)

approximate factorization procedure 14.

Historically, coupling potential flow to viscous flow via boundary-layer

analysis has proved troublesome at the separation point and in the recirculation region.

Since we are computing the full Navier-Stokes equations in time-dependent form in the

inner region, the above difficulties associated with boundary-layer methods are

avoided.

1.2. Unsteady Transonic Flow and Aeroelastic Problems

Transonic flow is characterized by the presence of regions of supersonic flow

embedded in a subsonic region, as illustrated in Fig. 1.2. Mathematically, the governing

equations are inherently non-linear, a fact that has prevented the application of

traditional analytical tools and early numerical methods to the analysis of such a flow

condition. In addition, transonic flows tend to be more unsteady and three-dimensional

than purely subsonic and supersonic flows 15. Despite these difficulties, flight in the

transonic range is highly desirable for commercial airplanes which achieve their best

cruise performance at transonic speeds 16. This flow regime is also encountered by

modem high performance aircraft during maneuvers 17, helicopter rotor blades 18,

3



turbomachinery19,launchvehiclesin their initial stagesof flight20re-entrybodiesat

hypersonicspeedsandevenbluff bodiesatsubsonicspeeds21.

" M.<I

M<I

Fig. 1.2: Mixed Flow Regions in Transonic Flow.

In non-steady flow situations, The presence of a supersonic region embedded in

a subsonic region causes downstream disturbances to be propagated upstream with a

considerable time lag, which results in significant out-of-phase forces.

It has been known for quite some time22, 23 that transonic flow conditions are

critical for flutter, with the flutter dynamic pressure being substantially reduced for

Mach numbers near unity, in a phenomenon that has been called "transonic dip"22 -4.

This problem is illustrated in Fig. 1.3, from Ref. 2. The severity of flutter at transonic

speeds is linked to the presence of moving shock waves over the wing surface 25.

Tijdeman24_ 26 identified the following types of shock motion:

4
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"Sinusoidal Shock-Wave Motion (Type A): The shock moves almost

sinusoidally and remains present during the complete cycle of oscillation,
although its strength varies. Due to the dynamic effect, phase shifts exist

between the model motion and shock position and between shock strength
and shock position. The maximum shock strength is not reached during the
maximum downstream position of the shock, as in quasi-steady flow, but
during its upstream motion.

Interrupted Shock-Wave Motion (Type B): This motion is similar to Type A,
but now the magnitude of the periodic change in shock strength becomes
larger than the mean steady shock strength and, as a consequence, the shock
wave disappears during a part of its backward motion.

Upstream-Propagated Shock Waves (Type C): At slightly supercritical Mach
number a third type of periodic shock-wave motion is observed, which

differs completely from the preceding types. Periodically a shock wave is
formed on the upper surface of the airfoil. This shock moves upstream while
increasing its strength, The shock wave weakens again, but continues its

upstream motion, leaves the airfoil from the leading edge, and propagates
upstream into the oncoming flow as a (weak) free shock wave. This

phenomenon is repeated periodically and alternates between upper and lower
surface."

02

(D
02

&.

.o
E
t_
t--

D

02

"m
!

I.t.

Linear Theory

Low Damping
Critical Flutter Point

f

0 Mach Number 1

Fig. 1.3: Flutter Dynamic Pressure Variation with Mach Number (after Ref. 2).
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From the above considerations, it is clear that accurate flutter predictions

depend on the ability of the computational fluid dynamics procedure to predict correct

shock strength and location, in a time-accurate fashion. Other aeroelastic problems,

such as tail buffet2,17, are more demanding and require advanced turbulence models,

since significant separation is characteristic to this phenomenon.

1.3. Historical Persvectiyf

Numerical computation of unsteady transonic flows has been one of the major

challenges to aerodynamicists. Consequently, progress in this area has followed closely

the development of Computational Fluid Dynamics (CFD). Reviews of the state of the

art have been published every few years15,27-30,17. AGARD conferences have been the

focus of much of the pertinent work, and they have had specific reviews31-33.

Early studies on unsteady transonic flow were impractical because of the

inherent nonlinearity of that flow range, which prevented the use of the available

analytical tools, such as panel and doublet- and vortex-lattice methods35,36. So

transonic flutter predictions had to rely on experiments22,34.

The numerical computation of transonic flows was initiated by the pioneering

work of Munnan and Cole 37, which gave rise to substantial development in methods

for solution of the Transonic Small Disturbance (TSD) equation. Early attempts at

6
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numerical solution on harmonically oscillating airfoils 38 were obtained in a two-step

process, first solving the steady nonlinear problem using the steady transonic small

disturbance equation and then solving a linear perturbation equation for small

perturbations about this steady solution.

Time-accurate solutions to the TSD equation were obtained by Ballhaus et

al.39,40 This formulation was used by BaUhaus and Goorjian 41 to construct the code

LTRAN2, which would later be subsequently improved and heavily used in its various

forms. These methodologies proved to be effective, although limited by their restriction

to weak shocks and slender bodies.

i _ _

In parallel to this thrust in numerical methods, experimental investigations by

Tijdeman 24 at the NLR in The Netherlands gave new insights into the physics of

transonic flow, especially shock motion 21. Subsequent experimental investigations by

Tijdeman et al. at NLR 42--44 and the AGARD standard aeroelastic configurations 45,46

provided essential experimental data tobe used in validation of computational fluid

dynamics methods. In addition, unsteady aerodynamic data were also published in a

compendium form by AGARD 47.

At this time, Euler and Navier-Stokes computations were still too costly, and

the unsteady two-dimensional Euler computation performed by Magnus and

Yoshihara 48 is noteworthy. An explicit time-marching procedure was used, with two

Cartesian (a fine and a coarse) grids and an overlapping body-fitted grid near the

airfoil. Another unsteady transonic computation using MacCormack's explicit time-

marching procedure for the Euler equations was made by Lerat and Sides 49.
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A new wave of evolutionintransonicflow computation came with methods for

solutionof the two-dimensionalFull-PotentialEquation (FPE)50-52 which could handl_

arbitrarybodies, but were stilllimited by low transonicMach numbers. The two-

dimensional method of Sankar et al.51 was subsequently extended to three-

dimensions4,5 in the USIPWING code and applied to unsteady flows past AGARD

standard configurations53and a F-5 fighterwing54. Several improvements were also

made in these methods, such as approximate non-reflectingfar field boundary

conditions52 and entropy-correcteddensitybiasing55-59.

The two-dimensional TSD-based code LTRAN2 also benefited from

improvements such as approximate non-reflecting far field boundary conditions60,61

and viscous corrections62. At the same time, research at ONERA 63-65 emphasized a

strong coupling between unsteady inviscid two-dimensional TSD solutions and integral

boundary-layer methods. Meanwhile, LTRAN2 was extended to three dimensions by

Borland and Rizzetta66-68, in what became the XTRAN3S code, to be widely used in

the following years69-72. Another code which evolved from this formulation was the

CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance)

code 73-78, which found wide use in the research and industry communities.

Euler methods evolved significantly with the advent of implicit schemes14,79

which allowed larger time steps. These methods were used by Levy80, 81 to study

transonic buffet, and by Steger and Bailey 82 to study aileron buzz. Sankar et aI.

presented unsteady three-dimensional computations for fighter wings83,84 and rotor

blades 85. In that method, artificial dissipation86 is used for numerical stability. The



methodwas later extended to Navier-Stokes computations about rotor blades6,87, a

fighter aircraft configuration7,11 and a wing with an oscillatory flap88. An upwind

differencing capability using Roe's flux-difference splitting89,90 has been recently

included in that code91, 92. Reductions in CPU times for steady transonic 1 and rotor

blade 1,93 flows have been obtained by using the Navier-Stokes/FuU-Potential zonal

decomposition approach. For unsteady transonic flow, CPU times were also reduced

with the application of the GMRES (Generalized Minimum Residual) technique30,94

A similar approach for the Euler equations was used by Guruswamy95. At

NASA Ames, Hoist et al. 96--98 extended Pulliam and Steger's ARC3D code 86 to the

solution of the thin-layer Navier-Stokes, in a new code called TNS (Transonic Navier-

Stokes).

Other two- and three-dimensional Euler/Navier-Stokes methods have been

developed using upwind differencing by flux-vector splitting99,100 and flux-difference

splitting 89,90. Notable examples of the former are the CFL2D and CFL3D finite

volume codes developed at NASA Langley by Thomas et al., initially for steady

flow 101-103 and later extended to unsteady flowsl04,105. The CFL3D code has been

applied to and F/A- 18 forebody configuration using a multiple-block approach 106-108.

The unstructured grid approach has received increasing attention in the past

several years. These methods can represent virtually any complex geometry and

adaptive meshes can be used to obtain local refinement in regions of the flow where

gradients are larger. However, they bring additional needs for appropriate data

structures 109,110 and grid refinement techniques 110,111. The mesh generation itself has

9



been the subjectof much researchl10,112,113.At NASA Langley, Batina et al.I14-117

have developed an unstructured implicitEuler finite-volume solver for unsteady

transonicflow analysis,which has been successfullyappliedto a NACA 0012 airfoil

pitching harmonically and to an ONERA M6 wing and a F/A-18 aircraft

configuration 116.

To cope with the larger demands of unsteady Navier-Stokes computations for

complex aircraft configurations, as well as to facilitate computation of moving surfaces,

zonal structured grid approaches have been recently used96,118-122. Among these is the

code ENSAERO120,121, which is in development at NASA Ames for the prediction of

aeroelastic responses by simultaneously integrating the Euler/Navier-Stokes equations

and the modal structural equations of motion using aeroelastically adaptive grids. These

zonal approaches bring up the question of conservative treatment of zonal interfaces 123.

Problems that have received considerable attention in recent research include

complete aircraft computationsl06--108,116, and delta wing oscillations l24-126. In the

experimental arena, a new development is NASA Langley's Benchmark Aeroelastic

Models Program 127, designed to provide well documented data sets for validation of

CFD methods.

From the recent work on unsteady transonic flow about complex aircraft

configurations, two trends may be identified: First, the research community is

developing techniques for solution of the unsteady Navier-Stokes analysis over the

complete aircraft, using appropriate approaches to deal with the complex configurations

and large computational resources needed, mainly unstructured grids and multi-block

10



structuredgrids.On theotherhand,thereis still work to improvethetransonicsmall-

disturbancecodeCAP-TSD128whichallowspractical,fast computationsthat maybe

usedin thedesignphase.This latter observationshowsthe gapbetweenresearchand

practicalapplicationin this area:Very complexmethodsbeingdevelopedbut a much

simpler code being actually used.There is clearly a need to bridge the gap, by

providingthemorerealisticrepresentationof thecomplexNavier-Stokesmethodswith

substantiallyreducedcomputationalexpense.Thehybrid Navier-Stokes/FuU-Potential

methoddescribedin this work is anattemptatf'dlingthisgap.

H :

!
1.4. Structure of The Present Work

The remaining of this thesis is organized as follows: First, the mathematical and

numerical formulation of the Navier-Stokes and Full-Potential solvers are discussed in

Chapters II and HI, respectively. Next, the coupling between the FPE and NS solvers is

described in Chapter IV. In Chapter V, applications of this method to a rectangular

NACA 0012 wing in subsonic steady flow and to a F-5 wing in transonic steady and

unsteady flow are discussed. The thesis concludes with an assessment of the hybrid

method's prediction capabilities and limitations and recommendations for future work.

11
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NAVIER-STOKES FORMULATION

In the present Chapter, the mathematical formulation of the Navier-Stokes

equations is presented and subsequently the numerical method is described.

2.1. Mathematical Formulatio_l

The vector form of the full Reynolds-averaged, 3-D Navier-Stokes equations

based on an arbitrary curvilinear coordinate system can be written as:

Q_+E_ + F. +G_ = R_ + S.+T_ (2.1)

where Q is the vector of unknown flow properties; E, F, G are the inviscid flux vectors;

and R, S, T are the viscous flux vectors. Eq. (2.1) may be written in non-dimensional

form, using as non-dimensionalization quantities p. for density, a- for velocity, c

(reference chord) for length,/.t, for viscosity, and P**a_ for pressure, as:

1

Q_ + E_ + F_ + G_ = _-_c(R_ + S, + T_) (2.2)

12
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where Re =p.a.c/#. is the Reynolds number based on the free-stream speed of

sound. The resulting non-dimensional flux vectors are:

P

pu
1

Q=TP v

pw

e

; E= 1,
J

pU

puU + _,, p

pvU + _yp

pwU + _,p

ie + p)U- _,p

pvV + rlyp

pwV + rl_p I

'e + p)V- rl, pJ

pww+C,p|
ie+p)W-¢,pJ

1

J

0

S= 1,
J

0

rl:Rs+r/ySs+ rLTs

T= 1
J

0

_,R_ + _,Ss + _,Ts

(2.3)

where J is the Jacobian of the transformation between Cartesian and curvilinear

coordinates, given by:

.1_ -1J = [Y_(xcz,rx,_z¢) yo(x_z¢-xcz¢)+y¢(x_z¢-xcz,_)] (2.4)

U, V and W are the contravariant components of velocity, given by:

13
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V = rlt+rl,,u+ rlyv+ rl,w

w =L+_,u+_,v+Lw

The pressure p is related to the total energy e and kinetic energy by:

P=(Y-1)[e 1 , z z 2,'1-_ptu +v + w )J

(2.5)

(2.6)

The shear stresses are given by:

[4 )]v_,+v,,rl,+v_, w_.+w,_

•_- .[(_,¢,+u,0,+u,_,)+(v,¢.+v,0.+v,(.)]
•o--,[(u,¢.+u,o.+u,C.)+(w,¢.+w,0.+w,(.)]

2 +u_fx+w_¢'+wnrl"+wfff')] (2.7)

..-.[(v,¢.+v,o.+v,C,)+(w,¢,+_,o.+w,(,)]

[4 , )]_..=u -_(w__.+,,.,n.+,,_C.)--i(u__.+u,o.+u_C.+v__,+v,n,+v_"

and

l.t (_,,O_a2 + O,Ta2+(_O_a2 )Rs=u_=+v_,+w_,,+ Pr(r- 1) 1/,

U (¢,a_aZ+ rl, O,_aZ+_,o3,a_)
Ss=u'r'v+v'r.+w'r,"l pr(7_ 1)

T s = u ,r... + v ,r,, + w ._,_-i Pr -1) (_'3¢az+rl'0'_a_+_'o¢a_)

(2.8)

14
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where Pr = It cJk is the Prandfl number and a is the speed of sound. The notation

o9¢a2 is a short form for o9(a2)/o_.

In turbulent flows, the molecular viscosity It appearing in Eqs. (2.7) and (2.8) is

replaced by It + Itr, and the quantity It/Pr in Eq. (2.8) is replaced by/.t/Pr + Itr/Prr,

where Itr is an eddy viscosity and Prr is the turbulent Prandtl number.

2.2. Numerical Formulation

In this section the finite-difference numerical formulation of the Navier-Stokes

equations (2.2) is discussed. First, the f'mite-difference discretization of the derivatives

is described. Next, the linearization of the resulting non-linear system of equations and

its approximate factorization into two block-tridiagonal systems of equations are

discussed. Finally the numerical implementation is described.

2.2.1. Discretization

The time derivative, Qx, of equation (2.2) is approximated using two-point

backward difference at the new time level 'n+l':

Q_- Qn+I_QnAz I-O(A_')-AQn+IA,f t-O(Az) (2.9)

15
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where 'n' refers to the time level at which all quantities are known, and 'n+l' is the

new time level. All spatial derivatives are approximated by standard second-order

central differences and are represented by the difference operators 8, e.g.:

(E,)i.:.,=(_,E)i.j.k +0(A¢2)= Ei+,.:.k-Ei-l.i.k .I.O(A_2)
-

(2.10)

Note that the choice of A_ = At/= A( = 1 in the computational space is made

for convenience.

The streamwise and normal derivatives, E_ and G _, are evaluated implicitly at

the new time level 'n+l'. The spanwise derivative, F_I , is evaluated explicitly at the old

time level 'n', but uses the 'n+l' values as soon as they become available. Thus, the left

side of the discretized form of Eq. (2.2) becomes

Qa+l n,. _,,.+1 _n+l F_,/+l,k L,n+l r.n+l r.,.+l
i,j,k -- _i,j,k ._ lP-ai+l,j,k -- IP-d-l,j,k + -- IP i,j-l,k [ _i,j,k+l -- _ti,j,k-I

Az 2 2 2
(2.11)

This semi-explicit treatment of the spanwise derivative enables the scheme to

solve implicitly for AQ _÷1 at all points at a given spanwise station at a time. To

eliminate any dependency the solution may have on the sweeping direction, the solver

reverses the direction of spanwise sweeping with every sweep, i.e. for every other

sweep, Eq. (2.11) is replaced by:

Ir_ n+l ir_ a t-_ n+l _n+l L-_n+I n f'_ n+l /"_ a+l
_i,j+l,k -- Fid-l,k *oti,j,k+l -- 1,Ji,j,k-1_'_.i,/,k -- %Ki, j k ._ lP._i+l,j,k -- IP_i-l,j,k _- (2.12)

Aqr 2 2 2
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The viscous terms R_, Srl and T_ are evaluated explicitly, using half-point

central differences denoted here by the difference operator _, so that the computational

stencil for the stress terms uses only three nodes in each of the three directions. For

example, in the computation of R_, the term (_2/_u_)_ appears and is discretized as

follows:

2 .__" 2 2

a_

(_2_)i+_2"J'kUi+l'j'k--Ui'j'kA_ (_x]_)i-_/2,J,k2 Ui,j,k--_i-l,j,kA¢

a¢

2 _z
(_:#)i,j.k'l'(_x2/'_)i+l,j,k (Ui+l,j.k--Ui,j,k) (_x/'_)i,j,k"b( J'l)i_l,j, k (Ui,jok--Ui-l,j,k)

(2.13)
2 A_ 2 A_

a_
1 2 2

-

Explicit treatment of the stress terms still permits the use of large time steps

since the Reynolds numbers of interest here are fairly large.

With the above described time and space discretizations, the discretized form of

Eq. (2.2) becomes:

AI'{V_n+l _-nsn,n+l_.Tn,n+l)AQ"+_+Az(5_E"+_+SnF'"+'+c_;G_+I)='-_eW_'+ + (2.14)

Note that all viscous terms include 11-derivatives, for which known values at the

new time level 'n+l' are used, hence the notation _¢ R n,"+l.

17
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2.2.2. Linearization

The time and space discretizations described above lead to a system of non-

linear, block penta-diagonal matrix equations for the unknown AQ n+l= Qn+l_ Qn, Eq.

(2.14), since the convection fluxes E, F, G are non-linear functions of the vector of

unknown flow properties Q. Equation (2.14) is then linearized using the Jacobean

matrices A = o3E/o3Q and C = tgG/tgQ, given by:

kt k._ ky k, 0

kx_)2-UO O-k_Y2 u kyu-k,,7'l v k_u-k,,ylw k,,Yl

kyt_2-vO kxv-kyT'lU O-kyY2 v kzv-k_Yl w kyYl

kz_ 2-wO k,,w-kz71 u kyw-k, Yl v O-k, Y2 w kzT'l

o(¢-b) k b-r uO k,b-rlvO k.b-rlWO k,+rO

(2.15)

where:

for A . _2=___1(for C ' __ U2"I'V2"I'W2" ) O=k,,u+k,v+k,w

O=k,+0 ; 71=7-1 ; )'2=_--2 ; b=---_-_ 2
P

(2.16)

The linearization is obtained as follows:

n _E " n+1 n

AQn+I
A n

= En+AnAQn+_+ O(a_2) (2.17)

18
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and similarlyfor G "+_.Applying theselincarizexlfluxvectorstoEq. (2.14)yields:

[I+ A_ A"+ _, C")]AQ "+I=RHS '''+I

=-A'r(8_E"+ ¢%_F"'+'+ ¢$_G')+ _e(8_a'r_ R,.,+_+ _.IS,,.,,+I+ _¢T,.,,+I)

(2.18)

where I is the identity matrix.

2.2.3. Approximate Factorization

Eq. (2.18) is a system of linear, block penta-diagonal matrix equations, which is

considerably expensive to solve. The approach used here is to employ the approximate

factorization of Beam and Warmingl4:

[I + Az(t_ An + t_,Cn)]AQn+I = [I + Azt_ An][I + Azt_C-] AQ .+l + O(AzS) (2.19)

which allows the system of equations (2.18) to be written as:

[I+ AZ 8_ A_][I + A'r8¢C"] AQ_+I = RHS ",'+I (2.20)

Note that there is no loss of temporal accuracy, because the error incurred due to

the approximate factorization is of order O(AzS). The system of equations (2.20) may

now be solved in two steps, each involving only a block-tridiagonal system of

equations:
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[I + A_ 8_ A n] AQ "n+l= RH S,n _+1

[I+ A_8:C"]AQ"+: = AQ "'+:
(2.21)

2.2.4. Diagonal Form

The computational work required to solve the systems of equations (2.21) may

be reduced by employing the diagonal algorithm of Pulliam and Chaussee 13. Since the

flux Jacobian matrices A and C have a complete set of eigenvalues and a corresponding

set of distinct eigenvectors, the similarity transformations may be used to diagonalize

A andC:

A=T,_A_T]I ; C = TfA_'T_ I (2.22)

where the diagonal matrices A_ and A_ may be concisely expressed as:

A_ = diag[U,U,U,U + a.__l,U- aaf-_1]

A_ = diag[ W, W, W, W + aa[_6, W- aa[_ ]

(2.23)

2 2 2 2 2 2
where A1 = _ _ + _y + _, and A6 = _x + _y + _,. The eigenvector matrices are given by:

20
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Tk _

_xu _,u-_=p _,.u+ [h,p o_(u+ _xa ) _x(u-_,,a)

T,..,-_,p _,.,+_.p _w <_(.,+_;.a) <_(w-_;a)

,.°',..+[,.°:i,.+ [,°2,.1+.r°+o'+:,].r°'-+:'p(_..,,-,;,,,)]p(,;.w-r<.u)]pO;,u-,;.v)]L _ L y, a_]

(2.24)

and

T; 1=

Li-n-'(Lv-Lw) Lug Lvg+Lp-' Lwg-l;,n-'
~ -i ~ 14/ ~k,i-p (k: -k,u) Lug-Lp-' Lvg _,,wg+Lp-'
Li-p-'(_,u-Lv) Lug+_,p-' _,,vg-Lp" Lwg

n(e-a_) n(_..a-r,u),_(,;a-r,v) n(,;.a- r,w)
n(e+a_) -,_(_.a+V,u)-n(_;,a+_',v)-nO;.a+y,w)

-#7:g

-17,g
-_,g

/ty,

(2.25)

where

_ k.c,.y,_e •

' -- 2 2 2 '

O=L.+L++Lw ; ]=O-¢i++) ; g=(?-O/+_ (2.26)

Applying the similarity transformations (2.22) to Eq. (2.20) and using the

identifies I = TkT_ 1 yields:
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[(T_T_) "+ Az'_(T_A_T_)_][(T_T_t) _+ Az'_f(TfAfT_)"]AQ "+_--RH$ '_''+t(2.27)

The fundamental simplification of the diagonal algorithm is obtained by moving

Tg and T¢ outside the difference operators _ and 8¢, respectively:

T_[I + A* _, A_]N"[I + A* _ A_] (T_I) "AQ'+t = RHS ",'m (2.28)

where N = T_IT¢. This simplification introduces and error because T_ and T¢ are

functions of (_, 77,5) and cannot be arbitrarily brought in or out the derivatives. It is

however believed 13 that the errors introduced are of order O(Az -2) and have the effect

of making the scheme first order accurate in time, the same order as the previous

approximations.

The solution of Eq. (2.28) still involves two block-tridiagonal systems, but now

the blocks are diagonal matrices. The solution of Eq. (2.28) is obtained through the

following steps:

[I + AzS, A_]AQ*n+t = (T_I)"RHS", "+_

[I + A, _¢ A_] AQ**"+_ = (N-1)"AQ'"+t

AQ'm = T_AQ **'+1

(2.29)

Note that the interim variables AQ* and AQ*" may be stored in the same memory

locations as AQ, conserving the available memory.
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2.2.5. Numerical Dissipation

The use of standard central differences to approximate the spatial derivatives

can give rise to the growth of high frequency errors in the numerical solution with time.

To control this growth, a set of 2nd/4th order non-linear, spectral radius based, explicit

artificial dissipation terms are added to the discretized equations. A second order

implicit dissipation is used to help the overall numerical stability of the scheme86,129.

The systems of equations in (2.29) are modified as follows:

[I + A_:t_ A_ - AZ e, Vg ¢_Ag J]AQ "_+_= (T_)"(RHS ".'+_ - D,_.'+t)

I + **n+l n ,a+lA'_A_-AzetV_¢3AJ]AQ =(N -_) AQ
(2.30)

where el is the coefficient of implicit numerical dissipation, Vg and Ag denote

backward and forward difference operators, respectively, Cx and ¢3 are defined as:

Imax(V+a_.__.__a,W+a.___..._6]
(¢l)i')'_=[J-l(U+a_l)]il,Lk[l+q _U+a._/--_U+a_f'_),+½,j,k]

+ ]max(U+a,x[-_,V+a.______") "
(¢3)i,,.k=[J-_(W+a'_f-A_)]ija,+½[1_ [,W+a,x[-_nW+aaf_)i,_,_,_1

(2.31)

and D_ ''+_ is the explicit fourth order dissipation, given by:

(2.32)

where ee is the coefficient of explicit numerical dissipation and
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(2.33)

For points adjacent to the computational boundaries, second-order explicit

dissipation is used instead of Eq. (2.32).

The above described fourth order dissipation may lead to "wiggles" near shocks.

To avoid this problem, a switching function based on the second normalized

streamwise derivative of pressure

Pi+l - 2 Pi + Pi-1

Ip,+,- 2 pi + P,-,I

is used to replace the fourth order dissipation with second order dissipation near

shocksl30,131.

:il

2.2.6. Turbulence Model

A slightly modified version of the Baldwin-Lomax (B-L) algebraic turbulence

model 132 is used, where the maximum shear stress is used instead of the wall shear

stress because in the vicinity of separation points, the shear stress values approach zero

at the wall.

In this model, two layers are considered; in the inner layer,/.t r is given by:
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(2.34)

where [to[ is the mean vorticity, given by:

- (2.35)

and £,, is the mixing length, given by:

£., = ted[l- e -=+/a.] (2.36)

where r=0.41 is the von KLrm=in constant, d is the distance from the wall,

A÷ = 26.0 is the van Driest constant, and

d. = d _p'rm'= (2.37)
#..

The modification with respect to the original Balwin-Lomax model is apparent in

Eq. (2.37), where z=_ is used instead of z,,_.

In the outer layer,/t r is given by:

(#r)o_ _ = K cp cl F,,, FI, (2.38)

where Kc = 0.0168 is Clauser's constant, cl = 1.6 is an empirical constant, Fw is given

by:
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F.,=min(d._F,_,O.25 dm_U_ ] (2.39)

when

(2.40)

._ -max(Vu'+_'+w')-m_(Vu'+v'+w') (2.41)

and d_ is the distance from the wall where Fm,_ occurs. Also in Eq. (2.38) Fk is

given by:

1

Fk= 1+ 5.5(0"3d] ' (2.42)

k.d,mJ

The switch between inner and outer zones occurs at the distance de, defined as the

smallest distance from the wall for which (#r)i_,_,,, = (/.tr)_,_a,=, i.e., the values from

Eqs. (2.34) and (2.38) are the same.

2.2.7. Numerical Boundary Conditions

The formulation described above must be complemented by appropriate

boundary conditions to be specified along the solid surface, Full-Potential/Navier-
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Stokes interface, at the wing root, and far field boundaries located outboard of the wing

tip and downstream or outflow boundary beyond the wing trailing edge. The boundary

conditions to be applied at the FuU-Potential/Navier-Stokes interface are discussed in

Chapter IV. The remaining boundary conditions are discussed next.

2.2.7.1. Solid Surface Boundary

The solid surface corresponds to the plane k = 1. The unknown vector in Eq.

(2.29), AQ includes values from k = 2 to k = KMATCH. At the end of each iteration,

the new values of Q_.j,1 are computed as follows: Density and pressure are computed

from the assumption that their normal derivative at the solid surface is zero,

dp/Sn = cgp/3n = 0. This is approximately satisfied on near-orthogonal grids as:

Pi.j.1 4Pi,ja- Pi.].3 4 P_j.2- Pi.].3 (2.43)
= 3 Pija = 3

The velocities at the surface are computed from the no-slip condition, i.e.:

uioa = (x,),.ja v,,ja = (Y':),.ja wio,1 = (z_:)i.ia (2.44)

2.2.7.2. Wing Root Boundary

The wing root corresponds to the plane j = 1. The unknown vector in Eq.

(2.29), AQ includes values from j = 2 to j = JMAX-1. The values of Q_aa, i.e., at

the root, are not updated; when computing the residual RI-IS "."+I at the j = 2 cell, the
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fluxes at j = 1 are computed with the symmetry condition that the contravariant

velocity normal to the boundary vanishes, i.e., V = 0. The pressure values at j = 1 are

computed using zeroth order extrapolation, so that Pi.l.k = Pi.2,k.

2.2.7.3. Far Field Boundaries

The downstream ( i = 1 and i = IMAX ) and outboard (j = JMAX ) boundaries

are treated in the same way. The velocity normal to the boundary is computed. Then,

the boundary conditions are imposed depending on whether it is an inflow or outflow

and whether it is subsonic or supersonic:

• Supersonic outflow: all variables are extrapolated from the interior of the

domain;

• Subsonic outflow: the pressure is fixed to be the free-stream value and the

other variables are extrapolated;

• Subsonic inflow: the density is extrapolated from the interior of the domain

and the other variables are fixed from the free-stream;

• Supersonic inflow: all variables are fixed to be the free-stream values.
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CHAPTER IH

FULL-POTENTIAL FORMULATION

In the present Chapter, the mathematical formulation of the Full-Potential

equation is presented and subsequently the numerical method is described. The Full-

Potential solver used in the present work was developed by Sankar et al.4,5,133.

3.1. Mathematical Formulation

The 3-D unsteady compressible potential flow equation, in a body-fitted

coordinate system, may be written in a strong conservation form as:

(3.1)

where p is density and U, V and W are the contravariant components of velocity,

given by:
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V = rl,+rb, u + rlyv+ Ozw (3.2)

and J is the Jacobian of the transformation between Cartesian and curvilinear

coordinates, given by:

"1- -I
J=[Y_(X_z,7-X,TZ_) Y,7(x_z_-x_z_)+y_(x,Tz_-x_z,7)] (3.3)

In the present formulation, the full potential is denoted by _ and the

perturbation potential is denoted by _p, i.e.:

u= _, =u. +_o,

=v.+q,,
w= 0, =w. +_0,

(3.4)

It should be noted that the contravariant components of velocity can be

expressed in terms of the derivatives of _0 by substituting (3.4) into (3.2), which fields:

U= _, + AIdP¢ + A2qb,7 + A3g?_

V = 1"1,+ A2 d?#+ A4 qbn + A5 q_

W = _,+A3JP_+Asgp,7+Atgp¢

(3.5)

where

30



2 2 2

a.---+ +
A5= fiX= + rl,_, + rl,_',

A6 _2 + 2 2= _'+_-

(3.6)

In addition to the differential equation (3.1), an additional relation is needed to

express the density in terms of the velocity potential and its derivatives (i.e., the

velocity components). This additional relation is the isentropic gas law

1

p. t,aIJ (3.7)

where a is the speed of sound, given by the energy equation:

a 2 u 2 q" 112 "l"W 2 a 2 V 2

+ tPi ÷ - ÷ (3.8)
7-1 2 7-1 2

Note that the derivative q_, may be expressed in terms of the derivatives with

respect to the transformed variables as:

tp.= tp.+ tp__. + tp, 17.+ _p__" (3.9)

Using Eqs. (3.7) and (3.8), Eq. (3.1) may be written 4 as a second order

hyperbolic partial differential equation for tp:
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where Q is a source term associated with the rate of grid deformation133, which

vanishes for rigid grids and may be neglected for mildly deformed grids, which is the

case considered here.

3.2. Numerical Formulation

In this section the f'mite-difference numerical formulation of the Full-Potential

Equation (3.10) is discussed. The spatial flux-like terms appearing on the fight hand

side of Eq. (3.10) are discretized using standard central differences, which result in

formal second-order accuracy in space. The mixed time-space terms appearing on the

left hand side are discretized using two-point upwind differences. The temporal

derivatives are discretized using two-point backward differences. These discretizations

are described in more detail below. For convenience, the mesh spacing A_ , At/and

A( are set equal to unity in the computational domain.

3.2.1. Discretization

At a given time level n, the disturbance velocity potential _p and its temporal

derivative _p_ are known, and consequently all velocity components, speed of sound

and density are also known. Eq. (3.10) is a partial differential equation for tp with

32



!ill(i

nonlinearcoefficients. To circumvent the nonlinearities, the coefficients p, a 2, J, U,

V and W appearing on the left side, and the density p appearing on the fight side of

equation (3.10) are computed at the time level n. The remaining quantities in (3.10) are

kept at the new time level n + 1. In the process of evaluating the contravariant

velocities U, V and W, two-point central differences are used to evaluate the

derivatives of _p and the transformation metrics at the grid points and locations mid

distance between the grid points.

The temporal derivatives on the left hand side of Eq. (3.10) are discretized using

two-point backward finite-difference operators, while the mixed time-space terms

appearing on the left hand side are discretized using two-point upwind differences. In

this respect, the left hand side of Eq. (3.10) is expressed as follows:

(3.11)

For example, at a typical grid node (i,j,k), the first term inside the square

brackets of Eq. (3.11) is expressed as

- - _,,+x - 2(0" +

(A,r)z - (A,r)2 (3.12)

In the previous expression, Acp represents the change in the solution in two

consecutive time steps, i.e., A(0"+1 = q_"+l - _0", and A_p" = _p" - q_"-_. The mixed space-

time derivatives appearing in Eq. (3.11) are discretized using upwind-differencing for

the spatial derivative, and two-point backward-differencing for the temporal derivative.
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For example, in evaluating the second, third and fourth terms, the following

expressionsare used:

(3.13)

The flux-like terms appearing on the right hand side of Eq. (3.10) are evaluated

using two-point central-difference formulas, i.e.,

(3.14)

The density p in Eq. (3.14) is computed at the time level n, while the

contravariant components of velocity are computed using mixed information from time

level n and the new time level n + 1, in order to reduce the number of diagonals in the

final matrix of coefficients. Recalling Eq. (3.5), the contravariant components are

evaluated as follows:
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U n+l

V n+l =

wn+l -.

_t 4.AI _n+l.L A ,_,n

A2@.+A3_:=U +A,

n n+l
_Tt+A2_{+A4@. +As_}

}7,+A2@{+A4 ,I+A@,7 +As@f=V +A4A_),7

{,+A_}+A_ +A_ +'
_',+ A3 _ _+ As _b,1+ A6 = W '_+ A6 A_:

(3.15)

3.2.2. Density Biasing

In order to maintain numerical stability in regions of supersonic flow, the

numerical formulation must be constructed in such a way that it is consistent with the

physical domain of dependence. For that purpose, the artificial compressibility

method 134 is used. Here, the density values p that appear in (pU/J) on the fight side

of equation (3.10) are biased in the direction of the flow using a procedure suggested by

Hafez, Whitlow and Osher 57. First, a function F is defined as"

F=pq if M>I

F=p*q" if M<I (3.16)

where the superscript * refers to sonic conditions.

Then the biased density is defined as:

=Pi+½d.,qi.j.k (3.17)
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where q is the flow speed and M is the Mach number. It is clear from Eqs. (3.16,17)

that the biased density reduces to the local density in subsonic flow regions.

3.2.3. Strongly Implicit Procedure

When the above discretizations are employed, at each grid point a linear

equation results for the quantity A_0n+l = _pn+l_ q_n, namely:

an A,-^n+l . l.n A,,_n+l _L _n A,,_n+l ..;n m,,,_n+l
i,j,k LaWi,j,k_ 1 "1" UI,j,k Wi,j-l,k T (.'i,j,k LaWi_l,j, k "l" Ui,j.k Wi,j,k

_[. _n Amn+l lg n A _n+l -- _n a.-n+l
ei,j,k t-.aW i+l,j,k "l" J i,j,k "-"_Oi,j+l,k "P g i,j,k lAfftl i,/,k +l -- R_j,k

(3.18)

where the coefficients " n n n ,, nai,/,t, bi,j,k, Ci,j,_, di,j,k, nel,/,k, f i,j,k, ngij.k and Ri.i.k are functions

of the transformation metrics, the contravariant velocities, the density p, the speed of

sound a, and the time step Az. Application of Eq. (3.18) at the grid points result in a

sparse pentadiagonal matrix system which may be expressed as:

[M]{AcPIn+l = {R} n (3.19)

A lower-upper (LU) approximate factorization scheme, originally devised by

Stone 135, and applied to transonic flows by Sankar, Malone and Tassa 4, is employed to

solve the system of equations (3.19) efficiently. In Stone's strongly implicit procedure

(SIP), the matrix [M] is approximately factored as the product of two sparse lower
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([L]) and upper ([U]) matrices each having four diagonals. Eq. (3.19) can thus be

expressed as:

[L][U]{aW÷I={r}" (3.20)

where the elements of matrices [L] and [U] are recursively related to the coefficients

of the matrix [M]4,133. The solution to Eq. (3.20) is then obtained using a two-step

procedure where we first solve for a temporary solution vector {A_p'}, i.e.:

[L]{A_0"} = {R}" (3.21)

and next solve for {A_p}"+1:

[UI{A_}n+I -- {m_O * } (3.22)

It should be noted that the above approximate factorization procedure is

applicable to both quasi-steady as well as unsteady flow field solutions. In the former

case, the temporal derivatives of the potential function are set equal to zero and the SIP

can be regarded as an iterative relaxation procedure. In the latter case, the SIP is

regarded as a one-step non-iterative time-accurate marching procedure.
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3.2.4. Numerical Boundary Conditions

The formulation described above must be complemented by appropriate

boundary conditionsto be spccifi_lalong the Full-Potential/Navier-Stokesinterface,at

the wing root, and far fieldboundaries located outboard of the wing tip,outer

boundary, downstream or outflow boundary beyond the wing trailingedge. The

boundary conditions to be applied at the Full-Potential/Navier-Stokesinterfaceare

discussedin Chapter IV. The wing rootand farfieldboundary conditionsare discussed

next.

3.2.4.1. Wing Root Boundary

The governing equations (3.10) are applied on the j = 2 cell as at other interior

points. The computational plane j = 1 corresponds to the wing root. At this plane of

symmetry the contravariant component of velocity V should be zero. As an

approximation, this condition is enforced at j = 2. Using the expression for V in Eq.

(3.5), and the condition V = 0, the derivative _n may be obtained as

_n = _/,+A2_# +As_¢ (3.23)
A4

After _,_ is found, the derivative of the perturbation velocity potential, _p_ is

easily computed and the perturbation velocity potential at j = 1 is computed from

(3.24)
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3.2.4.2. Far Field Boundary

Since the flow is considered to be uniform at a large distance from the wing, the

disturbance velocity potential function (0 is usually set to zero on all far field

boundaries. This condition also implies that the flow velocities in the planes containing

these boundaries assume free stream values.

In practice, the computational domain is bounded and the assumption of zero

disturbance potential at distances not very far from solid surfaces causes the acoustic

waves that carry the perturbation information to be reflected at the outer computational

boundary. These reflected waves contaminate the solution and delay convergence 136.

In order to minimize this adverse effect, the far-field boundary conditions

derived by Shankar et al.52 are used at the outer boundary. In this approach, the

Riemann invariant R that corresponds to positive characteristics with respect to the

inward normal to the boundary is specified. The Riemann invariant may be expressed

as"

W 2

R =--_6 +-__ l a (3.25)

The actual implementation of this approximate non-reflecting boundary

condition is carried out as follows: Let R_. be the Riemann invariant corresponding to

the undisturbed flow field, i.e.:

R,.=-_ 2+ "_-__ 1 a**
(3.26)
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The internal solution in the computational domain at a given time level n gives

a Riemann invariant Rt_._vo_-i at the point (i,j, KMAX - 1). Variations in the values of

cp and its derivatives will introduce a variation _R with respect to R_j,XMAX-I. The

objective here is to set the values of the perturbation potential ¢ at the outer boundary

so that at each time step the variation that corresponds to these new values of ¢ is

equal to the difference between R.. and R_o._,_-I, i.e.:

_R/,j._Ax-1 = R**- Ri_j.too.x-1 (3.27)

so that the Riemann invariant in the computational domain approaches the far field

value. By employing a variational calculation on the expressions of W, Eq. (3.5), and

a, Eq. (3.8), and neglecting variations in the tangential derivatives of the potential,

t_tp_ and _tpn, the following expression may be obtained for _R:

(3.28)

The following difference approximations are used:

(_ ) A-n+1 ._n+l
_0 _ i,j.KMAX = _O¢) i'J'I_clAX -- LX_Oi'j'I_tlAX-1

A-"+I A "
(^) _Oi'j'KMAX--_i,j,I_91AX

(3.29)

It should be noted that the change in notation in Eq. (3.29) from _p to Aq)

implicitly assumes that the variations in the derivatives are due to the changes in q) as
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the solution marches in time, since Aq_"+1 = _p,,+l_ _p,,. By applying Eqs. (3.28) and

A ._n+l(3.29)inEq. (3.27),thefollowingexpressionmay be obtainedfor _Pi.#._x:

(3.30)

%:ii<_
<,

:i i I •

Eq. (3.30) is used at each time step to update the values of tp at the outer

boundary. Similar approaches may be used for the downstream (i = 1, i = IMAX) and

outboard (j = JMAX) boundaries. However, in the present work the application of the

above described boundary conditions only on the k = KMAX boundary was sufficient

to give good convergence characteristics.
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CHAPTER IV

NAVIER-STOKES/FULL POTENTIAL COUPLING

4.1. Partitionin_ of Comvutational Dgm_in

A typical partitioning of the domain into an inner zone and an outer zone is

illustrated in Fig. 4.1. The plane k = KMATCH corresponds to the interface between

the inner zone and the outer zone. The Navier-Stokes solver is applied at all planes up

to k = KMATCH. The FPE solver is applied between the planes k = KMATCH and the

outer boundary k-plane. Therefore, the two zones actually overlap, which allows

specification of boundary conditions at the interface without extrapolation.
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k = KMATCH Full-Potential Zone

Navier-Stokes Zone

Fig. 4.1: Partitioning of Computational Domain into Inner and Outer Zones.

4.2. Original Viscous-Inviscid Interface Boundary Conditions

In this section, the interface boundary conditions used in the original hybrid

scheme 1 are described. The Navier-Stokes solver is applied up to the location

k = KMATCH. This solver requires the flow properties (density, velocity, pressure) at

the plane KMATCH+I. These values are obtained through the numerical

differentiation of the velocity potential, and the application of the isentropic energy

equation:
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(4.1)

(4.2)

The full potential solver is applied down to and including the plane

k=KMATCH. This solver requires the velocity potential at the plane

k = KMATCH-1. These values are obtained by matching the normal component of

velocity vn at the plane k = KMATCH from the potential flow and the viscous flow. In

terms of the perturbation potential, this is equivalent to matching _p_ at k = KMATCH

and using the difference formula:

( _O _)i,j,I_MATCH _Oi,j,KMATCH+I -- _i,j,KMATCH-I
2

(4.3)

In order to obtain ¢p¢ from the Navier-Stokes solution, the expressions for the

contravariant component of velocity W in terms of the primitive variables and

perturbation potential are used:

w=C,+C,u+C,v+f,w (4.4)

W = _t + _xu- + _,v.. + _', w,. + A3_0_ + As ¢P,7+ A6 (Pf (4.5)
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Eq. (4.4) is used to evaluate W in terms of the primitive variables, obtained

from the Navier-Stokes solution at k = KMATCH. Using the value of W from Eq.

(4.4) and q_{ and tp,_ from the numerical differentiation of the perturbation potential

_p at the previous time level 'n', _p_ is obtained from Eq. (4.5) and finally used in Eq.

(4.3) to obtain q_ at k = KMATCH- 1.

4.3. Imoroved Viscous-Inviscid Interface Boundary Conditignq

Previous applications of the hybrid NS/FPE solver to an iced wing

configuration 137 with the above interface boundary conditions showed an oscillatory

behavior in convergence histories that indicated false reflections from the Navier-

Stokes/Full-Potential interface when the boundary conditions where implemented as

above. Similar numerical phenomena were observed in the past with respect to far-field

boundary conditions: Acoustic waves traveled from the solid surface to the outer

boundary and were reflected back to contaminate the solution and delay

convergence 136. The spurious waves responsible for the oscillatory convergence

behavior need to be eliminated. In unsteady flows this is even more important since

these spurious waves will compromise the time accuracy of the solution.

In the past several years, research has been underway52,60,61,138--150 to develop

and apply non-reflecting far field boundary conditions, which accelerate convergence

to steady-state and in some cases improve time accuracy. These boundary conditions

would not be directly applicable to the viscous/inviscid interface discussed here

because perturbations in one zone must be transmitted to the other zone, as illustrated
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in Fig. 4.2. The disturbances in the inner region should contribute to the outgoing

waves only, while the disturbances in the outer region should contribute to the ingoing

waves only, so that there is no reflection at the interface.

Full-Potential node

Outgoing waves Incoming waves

k = KMATCH
interface

• _ Navier-Stokes node

Fig. 4.2: Waves Contributing to Fluxes at k = KMATCH Interface.

4.3.1. Interface Boundary Conditions for the Navier-Stokes Solver

Following a development analogous to Giles' derivation of approximate non-

reflecting boundary conditions 148, a set of characteristics normal to a _'=constant

surface was obtained as follows: First, the vector form of the 3-D Euler equations based

on an arbitrary curvilinear coordinate system can be written as:

Q_+E¢+Fn+G_=0 (4.6)
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where Q is the vector of unknown flow properties; E, F, G are the inviscid flux vectors.

These vectors are given in Eq. (2.3) and are repeated here for convenience:

P

pu
1

Q=7Pv
pw

e

E= 1
J

pU

puU + _p

pvU + _p

pwU + _.p

(e + p)U- _,p

F 1.--..

J

pV

puV + rl.p

pvV + rl_p

pwV + rl, p

(e + p)V- rl,p

1
G"m"

J

pW

puW + (_p

pvW + (xp

pwW + (,p

(e+ p)W-_,p

(4.7)

Next, small perturbations on the primitive variables are considered. Let the

vector of perturbations on the primitive variables be denoted by &l, where:

&l=[Sp 6u 8v _w @]r (4.8)

Then the small perturbation form of the Euler equations (4.6) is given by:

,r,q_+_aq_ + fi _. + (_ = o (4.9)
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purpose is to construct a set of characteristics normal to a (=constant surface, therefore

tangential variations are neglected, and consequently Eq. (4.9) is reduced to:
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(_q, + (2 &l¢ = 0 (4.10)

where

w pC, p_', pC, o

0 W 0 0 _'---_-"
P

0 0 W 0 __z

P

0 0 0 W _---_'

P

o rp(x rp_, rpL w

(4.11)

The matrix (2 has five eigenvalues: _,l=X2=X3=W, _4=W-a3f_6, and

X5 = W + aafA-66, where A6 is given in Eq. (3.6). The five characteristics corresponding

to the hyperbolic system (4.10) are constructed by applying the similarity

transformation:

(2 = ']'cAche' (4.12)

Applying (4.12) to (4.10)

characteristic equations are obtained:

and left-multiplying the result with "]'_ the
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e, + A¢ c_ = 0 (4.13)

where = T_ &l, i.e.:

tel "

i

C4

C5

0

0

C+_, 0
A6 A6 A6

o
A6 A6 A6

1
0 0 0

a 2

2_A-66 2_6 2_-66 2

2_6" 2_6 2_6 2

0

0

8u

8v

!

!

!

J

(4.14)

The integration of Eq. (4.13) to obtain the characteristics Cl to C5 is performed

according to the signs of the corresponding eigenvalues, for example if ,_4 > 0 then c4

is computed using information from the inner zone, otherwise it is computed using

information from the outer zone. This corresponds to the eigenvalue splitting

A¢ = A_ + A_ and corresponding characteristic splitting c = c + + e-. Then Eq. (4.13)

becomes:

c++ ++A_.c_ = 0 (4.15a)

c; + A_c_ = 0 (4.15b)

The integration of Eq. (4.15a) is discussed next. For convenience, one scalar

equation is treated. Let c_ denote the characteristic at the k plane being calculated (the

49



(c_)n_w / +\old / +_new / + \NS
_c_). +3,+_c_ ) -_c_,-1) =0 (4.16)

where (cL1) Ns is the characteristic given by the Navier-Stokes solver at the k- 1 plane.

Considering that the linearization (4.9) is performed about the previous time step, then

(C_)°_d = 0 and Eq. (4.16) can be solved for (c_-)_w as:

( +_n,,, _ +A'r (cL_)Ns (4.17)
co - _+Az+I

The integration of Eq. (4.15b) is performed in an analogous fashion. The

discretization of the scalar form of Eq. (4.15b) is made as:

,- ,- , _,oo.
t- A- _c_+_) - _c_) = 0 (4.18)

where (cL_) _ is the characteristic given by the Full-Potential solver at the k + 1 plane.

Again, considering (ci)°_ = 0, Eq. (4.18)can be solved for (ci) n_ as:

(c_)_o._ 3,-Az (cL1)_ (4.19)
_,-Az-1

For steady flows, it has been found that slightly higher convergence rates may

be obtained by taking the limit as Az --> oo in Eqs. (4.17) and (4.19), i.e.:
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LCk) = tck+o (4.20b)
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For unsteady flows, numerical experimentation has shown that using the

unsteady form, Eqs. (4.17) and (4.19), does not yield better correlations between the

computed and experimental results. Therefore, the steady form, Eqs. (4.20), was used

also for unsteady flow cases. Further studies are needed to clarify whether the explicit

time integration of Eqs. (4.15) is consistent with the implicit Navier-Stokes and Full-

Potential solvers used in the present work.

With the resulting values of cl to cs, the changes in flow properties at the

interface are computed using the inverse of Eq. (4.14):

_v

&,

0 0 1

_ _ 0

0 1 0

1 0 0

1 1

a 2 a 2

;a4-£, pa4T  

-pa_]-_ pa_[-_

paa]'_ pa.f_

0 0 0 1 1

Cl

C2

C3

C4

C5

(4.21)
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4.3.2. Interface Boundary Conditions for the Full-Potential Solver

From the last two equations in Eq. (4.14):

C4 = 2_/A6 2

2al A6 "

(4.22)

il ii: i!:

:ql _
yields:

Using

1 __L_r
= _(a2]r_l =_ 6p = 2pa _aP

7',. 7'-1

pa

c4 = 2 '---b_'+'_/A6 pa 3a7"-1

cs=2_A O3V + 7-lpa 6a

(4.23)

(4.24)

By multiplying Eq. (4.24) by 2[pa the Riemann invariants axe recovered, i.e.,

the characteristic invariants may be expressed as:

b'W 2

R2-" _6 + 7'-1

(4.25)
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The f'u'st characteristic corresponds to the eigenvalue ,,1,4= W- a_-'_, and the

second to _5 = W+a3f'_. The Riemann invariants are computed according to the

signs of the corresponding eigenvalues, for example if _,4 > 0 then R1 is computed

using information from the inner zone, otherwise it is computed using information from

the outer zone. With the resulting values of R1 and R2, the changes in flow properties

at the interface are computed using the inverse of Eq. (4.25).

As shown in Chapter V, the above procedure has been successful in suppressing

the oscillatory behavior observed in the computations with the original boundary

conditions. Although the procedure is strictly valid only for steady flows, it was used

also for unsteady flows with results similar to those obtained by full Navier-Stokes

computations, as discussed in Chapter V.
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CHAPTER V

RESULTS AND DISCUSSION

In the present Chapter, applications of the hybrid Navier-Stokes/FuU-Potential

Method are discussed. First, the application of the method to a rectangular wing in

steady flow is presented. Next, the application to an F-5 wing in steady and unsteady

flow for both subsonic and transonic flow is presented. The method was also applied to

a rectangular wing with a simulated glaze ice accretion in subsonic flow, and the

corresponding results are presented in Appendix A for completeness.

5.1. Rectangular Winu Study

5.1.1. Configuration

The hybrid Navier-Stokes/Full-Potential Method has been applied to a

rectangular wing of aspect ratio 2.5. The airfoil section was NACA 0012. This

configuration has been experimentally studied by Bragg et al.151-153 as part of their

iced wing studies. The surface pressures were measured at five spanwise stations: 17%,
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34%,50%, 66% and 85% of the wing semi-span.The wind tunnel had a 0.85mby

1.22mrectangularcrosssection.Themodelsemi-spanwas0.95m.

Fig. 5.1: ComputationalGrid for theRectangularNACA 0012 Wing.

The computational grid used in the present study, illustrated in Fig. 5.1, was an

algebraic C-grid with 141 x 19 x 41 grid points, with 121 points over the airfoil surface

at each spanwise station. 14 spanwise stations were used along the wing, with 5 stations

extending beyond the tip. The Navier-Stokes and Full-Potential solvers were interfaced
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at KMATCH=20, so that about half of the number of points are located in each zone.

The Mach number was 0.12, the Reynolds number 1.5 million, and the angles of attack

were 4 ° and 8 °. The CPU time for this configuration was about 13.6 see. per iteration

on a Hewlett-Packard Apollo 700 workstation. This time was about 60% of the time

required for a full Navier-Stokes analysis. The CPU time for the same configuration on

Georgia Tech's Cray Y-MP/E was about 4.5 see. per iteration. This time was about 68%

of the time required for a full Navier-Stokes analysis. It was observed that the Navier-

Stokes module vectorized better than the Full-Potential module, therefore the

computational savings on a vector processor were lower.

5.1.2. Surface Pressure Distributions

The pressure coefficient distributions for angles of attack of 4 ° and 8 ° are

shown in Figs. 5.2 and 5.3, respectively. The small spurious peaks near the trailing

edge at all the spanwise stations are due to inadequate grid resolution in that region,

where the chordwise spacing was about 4%, and may be improved with a clustered

grid. Outside the trailing edge region, a very good agreement may be observed for the

case _--4 °, with the possible exception of station 85%. The discrepancies at that station

may be due to the tapering of the grid outboard of the wing tip, and better results could

be obtained with a finer grid near the tip. In Fig. 5.3, corresponding to the case _=8 °,

the results obtained from full Navier-Stokes computations are shown for comparison.

For this case, an underprediction of the suction peak is noticeable. It can be observed

that the underprediction of the suction peak for the case _=8 ° also occurs for the full

Navier-Stokes computations. It should be noted that the experimental results used here

were obtained with a small clearance between the upper and lower wind-tunnel walls
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and the wing surface. Consequently, wind-tunnel wall interference may partially

account for the underprediction of the suction peaks.

Further insight can be obtained by analyzing the lift coefficient distribution

along the span, shown in Fig. 5.4. The underprediction of lift can be clearly noticed in

this figure. Overall, it is observed that our current results correlate well with

experiments and are consistent with those obtained by a full Navier-Stokes code 8-10,

while consuming only about 60% of the CPU time.
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Fig. 5.4: Lift Distribution for the Rectangular Wing at ix--4 and 8°

Convergence Histories

The convergence histories for the original hybrid scheme showed a highly

oscillatory behavior, as shown in Fig. 5.5 for the rectangular wing at ix=8 °. These

oscillations indicated false reflections from the Navier-Stokes/Full-Potential interface,

which affected the solution at early time levels, and required a large number of

iterations, about 4000 to 6000, while the Navier-Stokes code was able to achieve

satisfactory convergence in about 2000 iterations.
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A significant improvementwas obtained by using the characteristic-based

interfaceboundaryconditionsdescribedin ChapterIV. Theconvergencehistoryof the

maximumresidualin theNavier-Stokeszonefor therectangularwing at cc--4° is shown

in Fig. 5.6. The convergencehistory of the full Navier-Stokescomputationis also

shownfor comparison.It canbeobservedthatthehybrid methodattainsconvergence

characteristicssimilar to thefull Navier-Stokesmethodwhenproperinterfaceboundary

conditions are used.Consequentlythe hybrid methodwas able to fully realize the

computationalsavingsof about40% when the improvedboundaryconditions were

used.
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Fig. 5.5: Residual Histories in Potential and Navier-Stokes Zones

(Rectangular Wing at cc=8°).
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5.2. F-5 Wln_ Studies

In order to investigate the applicability of the hybrid Navier-Stokes/FuU-

Potential method to unsteady compressible viscous flows, an unsteady problem

involving the F-5 wing in pitch oscillations was studied, so that the effect of the

interface boundary conditions on the accuracy of the time-dependent results could be

verified. The investigation presented here is aimed at the transonic range, which is a

very rigorous test for the present method, due to the development of shock waves

which cross the Navier-Stokes/Full-Potential interface. The interface boundary

conditions are therefore required to propagate significant disturbances. In the unsteady

flow simulations, these disturbances have to be propagated in a time-accurate fashion,

which presents an even more rigorous test. However, unsteady transonic flow

simulations present also a potential for significant computational savings by using the

present method, because of the numerous computations that axe needed in a typical

parametric investigation.

5.1.1. Configuration

The F-5 wing is chosen because a wealth of steady and unsteady data, as well as

detailed geometric description, are readily available. It also represents a challenging

configuration, since features such as taper and a thin, drooped leading edge are present.

The experimental lay-out used by Tijdeman et al.43,44 is illustrated in Fig. 5.7. The

investigators measured steady and time-dependent pressures at eight spanwise stations

indicated in Fig. 5.7 and listed in Table 5.1. Note that, for all cases presented here, no
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experimental data are used for the f'LrSt point in the upper surface of the wing at

spanwise stations 3 and 5, because the measuring probes at these points were defective.
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Fig. 5.7:F-5 Wing Experimental Lay-Out
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Table 5.1: Spanwise Stations Where Experimental

Data is Available for the F-5 Wing

Station No.i
1 18.1

2 35.2

3 51.2
i i

4 64.1

5 72.I

6 81.7

7 87.5

8 97.7

The computational grid used in the present study, illustrated in Fig. 5.8, was an

algebraic C-grid with 141 x 19 x 41 grid points, with 121 points over the wing surface

at each spanwise station. 14 spanwise stations were used along the wing, with 5 stations

extending beyond the tip. The Navier-Stokes and Full-Potential solvers were interfaced

at KMATCH=20, so that about half of the number of points are located in each zone.

The computations presented here were performed in NASA Lewis Research Center

Cray-Y/MP. The CPU time for this configuration was about 0.95 see per time step,

about 73% of the CPU time needed for a full Navier-Stokes computation.
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Fig. 5.8: Computational Grid for the F-5 Wing

5.2.2. Steady Flow Simulations

For steady flow simulations, the Mach numbers used in the present study were

0.6, 0.8, 0.9 and 0.95. The Reynolds number based on the root chord and free-stream

speed Rel=p..U..cr/#.. was 11 million for M_--0.8. The angle of attack for all

computations presented here was 0 °.
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The initial test case was Moo=0.6. The steady pressure coefficient distributions

at spanwise stations 35.2%, 72.1% and 97.7% are shown in Figs. 5.9(a), (b), and (c),

respectively. The numerical results are in very good agreement with the experimental

data. In particular the leading edge suction peaks seem well predicted, although

insufficient experimental data are available in that region. Also the precise location

where the lower and upper surface pressure coefficients match seems well predicted.

The next test case was M**=0.8. The steady pressure coefficient distributions at

spanwise stations 35.2%, 72.1% and 97.7% are shown in Figs. 5.10(a), (b), and (c),

respectively. Again the main features of the pressure distributions are well predicted.

A more demanding test case was M**=0.9, for which the steady pressure

coefficient distributions at spanwise stations 35.2%, 51.2%, 64.1%, 72.1%, 87.5% and

97.7% are shown in Figs. 5.11(a) through (f), respectively. Again the suction peaks and

the location where upper and lower surface pressure coefficient match seem well

predicted. A slight underprediction of the suction values between 10% and 50% of the

chord on the upper surface at the inboard stations is apparent. But the main feature of

this configuration is the onset of a weak shock on the upper surface, near the tip. This

shock may be observed in the experimental data in Fig. 5.11 (f), but it appears that the

weak shock was smeared in the numerical solution and cannot be clearly identified. By

checking for supersonic points in the full-potential region, it was observed that the

sonic line did cross the Navier-Stokes/Full-Potential interface for this configuration.
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ThelaststeadytestcasewasM0.--0.95,for whichthesteadypressurecoefficient

distributionsat spanwisestations35.2%,51.2%,64.1%,72.1%,87.5%and97.7%are

shownin Figs. 5.12(a)through (f), respectively.Here the dominatingfeatureis the

shockthat formsovermostof thewing, on bothupperandlower surfaces.Theupper

surfaceshockis strongerandaft of the lower surfaceshock.Thesefeatureswere well

predictedby thecurrentmethod,althoughsomeslightunderpredictionof themid-chord

uppersurfacesuctionvaluesis noticed.The suctionpeaksand locationof matching

upperandlowersurfacepressuresareagainwell predicted,exceptat thestation97.7%,

where the experimental data indicate a lower suction peak. This test case was

demanding in the sensethat the shock crossesthe Navier-Stokes/Full-Potential

interface,and the resultspresentedhere indicate that the hybrid method is able to

predict adequatelybothshocklocationandstrengthevenwhenthediscontinuitiesdue

to the shockarepropagatedthroughtheNavier/Stokes/FuU-Potentialinterface.Further

evidence to support this conclusion is presentedin Fig. 5.13, where the density

contoursat station81.7%of span,Moo= 0.95,areshown.In this figure, theNavier-

Stokes/Full-Potentialinterfaceis drawnto facilitatetheanalysis.It canbeseenthatthe

contours smoothly crossthe interface,and in particular the shock is well captured

acrosstheinterface.

Overall the results presentedhere show that the hybrid method can be

successfullyappliedto steadytransonicflows,evenwhentheshockcrossestheNavier-

Stokes/Full-Potentialinterface.Thediscrepanciesobservednearthetip seemto bedue

to inherentinaccuraciesassociatedwith thetaperingof thecomputationalgrid outside

thetip, andarepresentalsoin full Navier-Stokescomputations,andconsequentlynot

associatedwith deficiencies in the hybrid method. Furthermore, the differences
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between the computed and measured data are of the same order of, or lower than, the

more costly Navier-Stokes solutions presented by other researchers30,88,154. Numerical

experimentation also indicated that for the transonic cases presented here, the current

hybrid code with characteristic-based interface boundary conditions achieved higher

convergence rates than the original hybrid code and even the full Navier-Stokes

computations, probably due to the use of a higher time step in the FPE solver.Thus, it

may be concluded that the present hybrid method gives results that are comparable to

the more exact approaches, at less than 60% of the cost of Navier-Stokes simulations.

• <• /'

ii kll _
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5.2.3. Unsteady Flow Simulations

Numerous unsteady flow simulations are typically needed to predict aeroelastie

characteristics. These predictions are especially important in transonic flow, where

aeroelastic instabilities are more likely to occur. In the transonic regime, the flow is

inherently nonlinear, which has prevented the use of simpler methods, such as panel

methods and vortex lattice methods. In particular, the presence of a supersonic region

embedded in a subsonic region causes downstream disturbances to be propagated

upstream with a considerable time lag, which results in significant out-of-phase forces.

Full-potential and Euler methods have been applied to such flows with some success,

but viscous effects can alter the location and strength of shocks. In an unsteady flow

situation, both the location and strength of the shocks can change rapidly and generate

significant unsteady forces, which have to be known for aeroelastic analysis. Navier-

Stokes analyses are therefore a natural choice, but require drastically high

computational resources. The present hybrid Navier-Stokes/FuU-Potential method

presents the advantage of fully capturing the viscous and nonlinear effects, while

incurring a significantly lower computational cost. However, unsteady transonic flows

are also very challenging to the present method, due to the presence of strong

disturbances generated by unsteady shock motion, which need to be propagated

through the Navier-Stokes/Full-Potential interface in a time-accurate fashion. The

purpose of the investigation presented in this Section is to validate the present method

for these flow conditions.
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For the unsteady flow simulations presented here, the Mach numbers were 0.6,

0.9 and 0.95. The wing was in pitching oscillations about half-chord, and around

¢z0=0 °, i.e.:

= s0 + sin(r ) (5.1)

where Ao_ is the amplitude of oscillation, given in Table 5.2 for the various test cases.

Also, z = a**t/c is the nondimensional time, and tc = ogC[a** is the reduced frequency,

with c the reference length. Note that co = 2n:F, where F is expressed in Hertz. Note

also that the definition of reduced frequency here differs from that of Tijdeman et al. 43,

for consistency with the nondimensionalization used in the present work. The definition

of reduced frequency here may be related to the definition in the cited reference as:

2zc_Fc _Fc, U.. 2c K M.. 2c
a. a** U** a** cr c,

KI M**

(5.2)

where K1 is the reduced frequency as defined by Tijdeman et al. and c, is the root

chord, equal to 0.6396 meters. The reference length used in the present study was 1

meter. The reduced frequencies corresponding to the test cases used here are listed in

Table 5.2.
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, Table 5.2: Test Cases for Unsteady Flow

!i:!

2 0.6

3 0.9

4 0.95

40 0.115

40 0.111

40 0.222

I( 1

0.199

0.399

0.275

0.264

1(

0.373

0.749

0.774

0.785

Under these pitching oscillations, the F-5 wing deforms aeroelastically. During

the investigation reported by Tijdeman et al.43, 44, the wing vibration mode was

measured for the various test runs using eight accelerometers. These measurements

were used to obtain an approximate analytical expression for the vertical wing

displacement at various points, assuming no chordwise deformation (rigid rotation) and

parabolic spanwise deformation:

w(x,y) = aoo + aoxX + aloY -I- a11xy + a2oy 2 + +a21xy 2 (5.3)

where the coefficients aij are tabulated in Ref. 44. This approximation to the elastic

deformation allows a consistent representation by a rigid rotation about the node

corresponding to each spanwise station. The nodal lines corresponding to the cases

presented here are illustrated in Fig. 5.14, liom Ref. 44.
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Fig. 5.14: Nodal Lines for F-5 Pitching Oscillations

For a given spanwise station yj, the node is located at xNj and the motion at that

spanwise station is represented by a local rigid pitching rotation about this node, given

by:

aj('c)= Oja('t') (5.4)

where a('r) is given by (5.1) and Oj represents the mode shape, obtained from (5.3).
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For each unsteady flow simulation presented here, the job is restarted from a

previously converged steady flow solution at the specified Mach number and average

angle of attack, o_---0 ° in all cases considered here. It should be noted that the response

of the flow field to the oscillatory motion will involve a transient and a steady-state

response. This is illustrated in Fig. 5.15, where the time history of the lift coefficient at

the spanwise station 64.1% for the case M**---0.95, F--40 Hz, is shown. The results that

will be presented subsequently involve only the steady-state response. For that purpose,

enough iterations -- typically about one cycle -- were ran before the computation of

the unsteady pressure coefficients was started. For the case Moo=0.9, F=40 Hz, an

additional cycle was ran and the unsteady pressure coefficients were recomputed,

yielding almost the same results with no perceptible differences from the previous

cycle. This indicated that one cycle was indeed enough to eliminate the transient.

Another concern was to verify that the response was dominated by the fast harmonic.

For that purpose, the second harmonic was also computed and it was observed that its

values were negligible, except at locations where the fast harmonics presented peaks,

but at these locations the second harmonics were still much smaller than the first

harmonics.
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Fig. 5.15: Time History of the Lift Coefficient at 64.1% Span, Mo.--0.95, F--40 Hz.

The unsteady pressure coefficients were computed as follows: The actual

oscillations of the wing are given by (5.2) with tx0=0 °. Let the complex representation

of the motion be:

a°(_) = Aa ei= (5.5)

Now let the complex representation of the steady-state response be:

C_e(_)=[ReCC,,)+ilm(Cpi)] e',_ (5.6)
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Since the actual motion is given by the imaginary part of (5.5), the actual

response is given by the imaginary part of (5.6) and can be related to the complex

representation by:

C_,( _)=[Re(C_,,)+ i Im(Ce,)] e "_

= [Re(Cp,)cos(tcv)- Im(C_,,)sin(tcv)] +/[Re(C,,) sin(toy)t Im(Ce,)cos(tcv)] (5.7)

Then Re(Cel) and Im(Cei) can be obtained in terms of the actual pressure

coefficient response by:

"_+2r4r

Re(C,,,) =: J"Ce(*')sin(tcr)d'r

K" _r,+2r4r

Im(Cp,)=- 1Cp( )cosOr )d 
(5.8)

where '_1 is chosen so that the transient is not included in the computations. It should be

noted that the experimental unsteady pressure coefficients43,44 were normalized with

respect to the amplitude of oscillations, 2Aa. The actual computation of Re(C_,i) and

Im(Cpi) is finally performed by the discretization of Eq. (5.8):

(5.9)
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where m denotes the time step number, ml = ,1/A'r, and mr = 2n:/taXlr. Note that the

normalization with respect to the amplitude of oscillations has been included in Eq.

(5.9).

Using the above described procedure, the unsteady pressure coefficients were

computed for the configurations listed in Table 5.2. The first test case corresponds to

Math number 0.6, frequency of 20 Hz and amplitude of oscillation 0.106 degrees. The

nondimensional time step Ac= a.At[c was 0.005, so that 3369 time steps per cycle

were needed. The unsteady pressure coefficient distributions at spanwise stations

35.2% and 72.1% are shown in Fig. 5.16. The in-phase (real) component is in good

agreement with the experiment, although few test data are available near the leading

edge to confirm the level of unsteady pressure peaks. In particular, at 72.1% span the

first experimental point in the upper surface is missing and the first experimental point

in the lower surface seems faulty, as a peak is expected near the leading edge. The out-

of-phase (imaginary) component leading edge peaks appear well predicted, and so are

the distributions from about 40% chord towards the trailing edge, although the location

where the lower and upper surface imaginary components match is predicted aft of the

experimental location.

The next test case corresponds to Mach number 0.6, frequency of 40 Hz and

amplitude of oscillation 0.115 degrees. The nondimensional time step was 0.005, so

that 1678 time steps per cycle were needed. The unsteady pressure coefficient

distributions at spanwise stations 35.2% and 72.1% are shown in Fig. 5.17. Again the

in-phase (real) component appears to be in good agreement with the experiment,

showing little change with respect to the previous test case (F=20Hz). At this higher
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frequency, the out-of-phase (imaginary) component is overall higher than for the lower

frequency, in both the experimental and computed results. This imaginary component

appears well predicted for the locations aft of 30% chord, but the location where the

lower and upper surface imaginary components cross is predicted aft of the

experimental location. The leading edge peaks also seem overpredicted, although very

few experimental points are available there.

The next test case was M..=0.9, frequency 40 Hz and amplitude of oscillation

0.111 degrees. The nondimensional time step was 0.005, so that 1624 time steps per

cycle were needed. The real and imaginary parts of the unsteady pressure coefficient

distributions at spanwise stations 35.2%, 51.2%, 64.1%, 72.1%, 87.5% and 97.7% are

shown in Figs. 5.18(a) through (1). At all spanwise stations strong leading edge peaks

are present in the lower surface both in the in-phase and out-of phase component and

they seem to be well predicted by the present method. It may be recalled that in the

steady case, discussed in Section 5.2.2 above, the main feature of this configuration

was the onset of a weak shock on the upper surface, near the tip, which could be

observed in the experimental data in Fig. 5.11(f). In the unsteady case, strong variations

in the pressure coefficients are noticed about 50% of the chord at all spanwise stations.

These indicate that the oscillatory motion causes a shock wave to form over most of the

wing and move back and forth, generating the strong variations observed here.

On the lower surface, the real part of the unsteady pressure coefficient shows

relatively small variations, as seen in Figs. 5.18(a), (c), (e), (g), (i) and (k), while the

imaginary part shows stronger variations. This indicates that the shock wave on the

lower surface is predominantly out of phase with respect to the motion. The present
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method predicts this phenomenon for inboard stations, up to about half span, as seen in

Figs. 5.18(b) and (d), although about 15% of the chord aft of the experimental data and

somewhat smeared. At outer stations, the unsteady shock on the lower surface appears

to smeared and even disappears in the computed results.

On the upper surface, both the real and imaginary components show significant

variations indicating a stronger shock moving, with a significant in-phase, but higher

out-of-phase component. This phenomenon is better predicted in all spanwise stations,

especially the chordwise location, around mid-chord. The imaginary part in Figs.

5.18(b), (d), (f) and (h) seems to indicate some underprediction of strength of the out-

of-phase component of the shock, which may be due to smearing.

The results discussed above for the case M**=0.9, F=40 Hz are quite similar to

full Navier-Stokes computations performed with a different version of the Navier-

Stokes module used here 30. The same test case was also investigated by Obayashi et

al. 154, who used a streamwise upwind algorithm. In that paper, only the upper surface

results were presented and a comparison was made between the streamwise upwind

algorithm and a central-difference algorithm, with a more favorable correlation for the

former. Since the present method is modular, an upwind Navier-Stokes module could

potentially improve the unsteady shock prediction while maintaining the computational

savings obtained by the hybrid Navier-Stokes/Full-Potential method. It should be noted

that this case was a rigorous test for the hybrid method, since the unsteady shock is

moving back and forth and crossing the Navier-Stokes/FuU-Potential interface. As the

shock is not completely aligned with the grid, strong oblique disturbances are

propagated through the interface. The results presented here show that the interface
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boundary conditions are adequate to transmit these disturbances in a time-accurate

fashion.

The last test case was M**---0.95, frequency 40 Hz and amplitude of oscillation

0.222 degrees. The nondimensional time step was 0.005, so that 1601 time steps per

cycle were needed. An additional computation to assess the effect of the time step was

made with a nondimensional time step of 0.002, for which 4003 time steps per cycle

were needed. The real and imaginary parts of the unsteady pressure coefficient

distributions at spanwise stations 35.2%, 51.2%, 64.1%, 72.1%, 87.5% and 97.7% are

shown in Figs. 5.19(a) through (1). As occurred in the previous test case, at all spanwise

stations strong leading edge peaks are present in the lower surface both in the in-phase

and out-of phase component and they seem to be well predicted by the present method.

The steady flow results for M**---0.95, shown in Fig. 5.12, indicate a strong shock on

both upper and lower surfaces around 80% of the chord. The experimental data for the

unsteady case, seen in Fig. 5.19, show significant peaks around this chordwise location,

mostly in the real (in-phase) component, but also in the imaginary (out-of-phase)

component. These peaks are very localized, which indicates that they result more from

shock strength variations than shock movement. The numerical results presented in Fig.

5.19 show that the present method was unable to correctly predict the peak in the real

part, but predicted the peak in the imaginary part. The computations with a smaller time

step show some improvement in the real part, which indicate that the time step might

have to be further reduced to yield a better correlation. Further reductions in time step

were not attempted because of the large CPU resources that would be needed. This

improvement with time step also indicates that the deficiency is not due to the hybrid

method. It should also be noted that the current coarse grid presents some smearing in
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the shock, therefore small changes in the shock strength are not likely to be well

captured, even with a smaller time step.

Except for the above discussed discrepancy, the unsteady pressure coefficient

distribution is well predicted. It should be noted that this is a very rigorous test for the

present method, due to the strong shock crossing the Navier-Stokes interface, as seen in

Fig. 5.13. The results presented here indicate that the discrepancies observed in this test

case are inherent to the Navier-Stokes module, and can probably be overcome by using

an upwind Navier-Stokes module capable of capturing sharper shocks.

Overall the unsteady pressure coefficient distributions correlate well with

experimental data and are similar to those obtained with equivalent full Navier-Stokes

computations, with a fraction of the computational cost. The savings in CPU time were

found to depend on the vector capability of the CPU, ranging from 27% on the Cray

Y/MP-L up to 40% on a HP Apollo 700 workstation. It is believed that effective clock

times could be reduced even more with respect to full Navier-Stokes computations on

distributed processing machines, since the entire Full-Potential module could be solved

in parallel without data exchange with the Navier-Stokes solver, for a given iteration.

This possibility, however, is yet to be investigated.
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CHAPTER VI

N

/

,ii

CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

An improved hybrid Navier-Stokes/Full-Potential method has been developed.

This method has been applied to subsonic and transonic steady and unsteady flow

cases. The following conclusions can be drawn from the present investigation:

• The present method is an economical way of studying steady and unsteady

flows. The accuracy of Navier-Stokes computations can be retained with savings in

CPU times of more than 40% in some cases.

• When coupled analysis are used, special attention must be paid to interface

boundary conditions. Improper boundary conditions allow false reflections, which can

slow down convergence to steady-state or lead to loss of temporal accuracy. It was

found that the implementation of characteristic-based interface boundary conditions

developed in the present work can adequately treat the interface, and allow signals to

pass to and from one zone to another. This is especially important when shocks are

present, because strong oblique disturbances must be transmitted through the interface.
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• The interface boundary conditions developed in the present work are strictly

valid only for steady flows. However, it has been found that they could be applied to

unsteady flow cases with results similar to those obtained by full Navier-Stokes

computations.

• For unsteady transonic flows, Navier-Stokes computations are clearly needed,

because the strength and location of shocks are a major factor in determining unsteady

loads. Full-Potential methods predict shocks aft of their actual location and overpredict

their strength.

• The savings in CPU time were found to depend on the vector capability of the

CPU, ranging from 27% on the Cray Y/MP-L up to 40% on a HP Apollo 700

workstation. For steady flow cases, the computational savings were slightly higher,

because the hybrid method presented convergence rates higher than the full Navier-

Stokes method.

6.2. Recommendations

• The present hybrid Navier-Stokes/Full Potential method has proven to be an

effective way to maintain the accuracy of the Navier-Stokes simulations with

substantial reductions in computational cost. The savings in CPU time were found to

depend on the vector capability of the CPU, ranging from 27% on the Cray Y/MP-L up

to 40% on a HP Apollo 700 workstation. For this reason, it is recommended that further
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improvementsin vector processing machines be pursued by further vectorization of the

FPE solver.

• Effective clock times could be reduced even more with respect to full Navier-

Stokes computations on distributed processing machines, since the entire Full-Potential

module could be solved in parallel without data exchange with the Navier-Stokes

solver, for a given iteration. It is recommended that the implementation of the present

hybrid method on such machines be investigated.

• It is recommended that further studies be conducted to ascertain the suitability

of the interface boundary conditions developed in the present work to unsteady flows.

These studies should include an investigation on the consistency of applying explicit

time integration at the viscous/inviscid boundary, while using implicit solvers in the

inner and outer regions.

• The shock capturing capability of the present method seems to be limited by

the computational grid, in the inner region. The test case of the F-5 wing in pitching

oscillations at M**=0.95, with a strong shock moving over the aft part of the wing,

presents an opportunity for grid sensitivity studies. It is recommended that these

sensitivity studies are performed, to ascertain whether the inability of the present

method to predict the peak in the in-phase component of the unsteady pressure

coefficients is due solely to the lack of adequate grid refinement in the aft part of the

wing.
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• Since the present method is modular, numerical experiments with different

solvers could be undertaken. It is recommended that the ensemble FPE solver +

interface boundary conditions be constructed as a 'plug-in' module to be applied to

existing Navier-Stokes solvers as a means for quickly reducing the computational cost

of existing Navier-Stokes methods.

• It is recommended that the present methodology be studied in connection with

unstructured grid- based Navier-Stokes solvers. These methods are computationally

intensive and are likely to benefit substantially from the computational savings allowed

by the present technique.

In closing, it is hoped that the present hybrid technique, which combines the

accuracy of Navier-Stokes methods in the viscous regions with the economy of

potential flow methods in inviscid regions, will be used as a stepping stone for more

ambitious efforts involving aeroelastic and unsteady aerodynamic analysis of complete

aircraft configurations.
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APPENDIX A

APPLICATION OF THE HYBRID NAVIER-

STOKES/FULL-POTENTIAL METHOD TO AN

ICED WING

In this Appendix, the application of the hybrid Navier-Stokes/FuU-Potential

Method to a rectangular wing with a simulated glaze ice accretion in steady flow is

presented.

A.1. f, tnlfigamli_

The hybrid Navier-Stokes/FuU-Potential Method has been applied to an unswept

wing of aspect ratio 2.5 with a simulated glaze ice accretion as shown in Fig. A.1. This

configuration has been experimentally studied by Bragg et al. 151-153. The results for

the same configuration without the simulated ice accretion were presented in Chapter

V. The surface pressures were measured at five spanwise stations: 17%, 34%, 50%,

66% and 85% of the wing semi-span.
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Fig. A. 1: Simulated Glaze Ice Accretion

The computational grid used in the present study was an algebraic C-grid with

141 x 19 x 41 grid points, with 111 points over the airfoil (and ice) surface at each

spanwise station. 14 spanwise stations were used along the wing, with 5 stations

extending beyond the tip. The computational grid is illustrated in Fig. A.2. The Navier-

Stokes and Full-Potential solvers were interfaced at KMATCH=20, so that about half

of the number of points are located in each zone. The Mach number was 0.12, the

Reynolds number 1.5 million, and the angles of attack were 4 ° and 8 °. The CPU time

for this configuration was about 24 see. per iteration on a Hewlett-Packard Apollo 700

workstation. The CPU time for the same configuration on Georgia Tech's Cray Y-MP/E

was about 9.6 see. per iteration. These times are about 60% of the times required for a

full Navier-Stokes analysis.

A.2. Surface Pressure Distributions

The computed surface pressure distributions at the computational span stations

were linearly interpolated to the span stations where experimental data is available to

allow direct one-to-one comparisons141-153. The resulting pressure coefficient

distributions for the angles of attack 4 ° and 8° angle of attack are shown in Fig. A.3 and
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A.4, respectively. The spurious peaks near the trailing edge at all the spanwise stations

are due to inadequate grid resolution in that region. A good agreement may be observed

between the numerical and experimental results, except for the spurious peaks near the

trailing edge as mentioned above and for the strong peaks and oscillations near the

separated region. It should be noted that essentially the same results are obtained with

Navier-Stokes computations. For the 4 ° angle of attack configuration, the length of the

separation bubble appears very well predicted, although the exact chordwise location

where the it starts appears displaced, except near the tip. Due to the sharp pressure

variations just before the separation bubble, this slight displacement causes the pressure

level along the separated region to be somewhat underpredicted. For the 8° angle of

attack configuration, the displacement of chordwise location where the separation

bubble starts is observed only inboard, but the length of the separation bubble is not

predicted as well as for the 4 ° configuration.

It should be noted that the experimental results used here were obtained with a

small clearance between the upper and lower wind-tunnel walls and the wing surface.

Consequently, wind-tunnel wall interference may partially account for the

discrepancies noted above.

Further insight can be obtained by analyzing the lift coefficient distribution along

the span, shown in Fig. A.5. Interestingly, the underprediction of lift due to the lower

suction peak, observed for the clean wing configuration, is not observed for the 4 °

angle of attack iced configuration. This may be attributed to the sharp variation of

pressure coefficient with formation of the separation bubble near the leading edge.

Since the suction peak occurs in a much narrower region than in the non-iced
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configuration, the actual peak value becomes less important for the section lift. The

underprediction of lift at 8° angle of attack iced configuration at inboard stations, in

turn, appears to be due to the inaccurate prediction of the start of the separation bubble,

associated with its relatively longer length for this configuration.

Overall, it is observed that our current results correlate well with experiments and

are consistent with those obtained by a full Navier-Stokes code 8-10, while consuming

only about 60% of the CPU time.
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Fig. A.2: Computational Grid for Rectangular Wing with Simulated Glaze Ice

Accretion
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